Extragalactic science using MAXI + Swift

Paul O’Brien

University of Leicester

(+some slides from the MAXI team)
Sky views from MAXI

Zenithal View

Horizontal View

FOV Crossing Time for Each Source
>45 sec

FOV Crossing Intervals
Horizon to Zenith: 20 minutes
Zenith to Horizon: 70 minutes

One-orbit (90 minutes)
Coverage
85 - 95 %
Sensitivity and targets

Galactic Objects
- Crab
- LMC, SMC

Extra Galactic Objects
- Galaxies / QSOs
- Clusters of Galaxies

Key:
- 1 orbit
- 1 day
- 1 Week
- 6 months
Example MAXI AGN (preliminary)

Cen A

Mkn 421

Extragalactic science using MAXI + Swift November 2009
Motivation for AGN Variability Studies

• MAXI+Swift make a good team
• MAXI on-line light curves + alerts
• Follow-up with Swift etc.
• Many open questions:
 - How often do AGN change state?
 - What drives variability – test disk reprocessing and reflection models
 - Does PDS correlate with L?
 - Are there periodic phenomena? (Yes! Gierlinski et al (2008) REJ1034+396; a~1hr QPO)
 - Compare AGN and X-ray binaries

Imagine AGN as a large binary system where the “donor” is a galaxy

Extragalactic science using MAXI + Swift November 2009
AGN observations

PDS 456 (O’Brien, Reeves et al.)

Fig. 9. The current observations of PDS 456, shown as νFν spectra, where we have plotted the data compared to a ratio with an absorbed (NH = 2 × 10^{21} cm^{-2}) power-law of Γ = 2 at a mean 2 keV flux level of 5 × 10^{-12} erg cm^{-2} s^{-1}. Shown are RXTE PCA (black, 1998), XMM-Newton (2001, green), Suzaku XIS (2007, red), Chandra/HETG (2003, blue) and ASCA (1998, orange dotted). Strong variability is seen below 10 keV, from RXTE and XMM at high fluxes, down to Chandra and ASCA at the lowest/hardest observations. Note the 6 keV (observed) Fe K-shell absorption in the XMM, 2001, Suzaku, 2007 and RXTE 1998 observations. A summary of all these observations is shown in Table 1.
Galactic flares – tidal disruption events

- Passing star disrupted by central BH
- Fast rise, “soft” X-ray flare, decays over many weeks-months roughly as $t^{-5/3}$ (but see later)
- Peak luminosity up to $\sim 10^{45}$ erg s$^{-1}$
- Expected rate $\sim 10^{-4} – 10^{-5}$ yr$^{-1}$ per galaxy
- Unique probe of accretion physics – but needs very good light curve (cf. very poor at present)
Galactic flare rates

- MAXI SSC can detect bright tidal disruption events out to ~100 Mpc (if the sensitivity and localisation as claimed).

- Expected rate is low: 1-2 events per year. Once a candidate is found, trigger Swift for confirmation (i.e. Core of nearby galaxy) and then full follow-up.
Lodato et al. (2009, MNRAS, 392, 332) : different stars disrupt in different ways – due to the effective gravity of the star vs. the gravitational pull of the SMBH.

Changes the light curve and when curve decay rate reaches “canonical” $t^{-5/3}$ rate

Model using a polytropic index, γ, where larger γ means more uniform density.
Gezari et al. (2009)
GALEX observations

Comparison with Lodato model

SEDs cf. Galaxy+BB models
Summary

• MAXI can locate and monitor extragalactic objects such as AGN, tidal events etc. Follow-up with Swift etc.

• Both projects have set up subject teams to coordinate what to do following an alert (AGN, Nova-CV, “new”...)

• MAXI alert system under test; due “soon” (December?)

• Ideal time to combine “wide-area” facilities such as MAXI, Swift etc. so as to MAXImise science (many all-sky facilities coming, e.g. LOFAR, panSTARRS)

• See MAXI talk tomorrow by Tomida